The C. elegans engrailed homolog ceh-16 regulates the self-renewal expansion division of stem cell-like seam cells.

نویسندگان

  • Xinxin Huang
  • E Tian
  • Yanhua Xu
  • Hong Zhang
چکیده

Stem cells undergo symmetric and asymmetric division to maintain the dynamic equilibrium of the stem cell pool and also to generate a variety of differentiated cells. The homeostatic mechanism controlling the choice between self-renewal and differentiation of stem cells is poorly understood. We show here that ceh-16, encoding the C. elegans ortholog of the transcription factor Engrailed, controls symmetric and asymmetric division of stem cell-like seam cells. Loss of function of ceh-16 causes certain seam cells, which normally undergo symmetric self-renewal expansion division with both daughters adopting the seam cell fate, to divide asymmetrically with only one daughter retaining the seam cell fate. The human engrailed homolog En2 functionally substitutes the role of ceh-16 in promoting self-renewal expansion division of seam cells. Loss of function of apr-1, encoding the C. elegans homolog of the Wnt signaling component APC, results in transformation of self-renewal maintenance seam cell division to self-renewal expansion division, leading to seam cell hyperplasia. The apr-1 mutation suppresses the seam cell division defect in ceh-16 mutants. Our study reveals that ceh-16 interacts with the Wnt signaling pathway to control the choice between self-renewal expansion and maintenance division and also demonstrates an evolutionarily conserved function of engrailed in promoting cell proliferation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CEH-20/Pbx and UNC-62/Meis function upstream of rnt-1/Runx to regulate asymmetric divisions of the C. elegans stem-like seam cells

Caenorhabditis elegans seam cells divide in the stem-like mode throughout larval development, with the ability to both self-renew and produce daughters that differentiate. Seam cells typically divide asymmetrically, giving rise to an anterior daughter that fuses with the hypodermis and a posterior daughter that proliferates further. Previously we have identified rnt-1 (a homologue of the mammal...

متن کامل

ceh-16/engrailed patterns the embryonic epidermis of Caenorhabditis elegans.

engrailed is a homeobox gene essential for developmental functions such as differentiation of cell populations and the onset of compartment boundaries in arthropods and vertebrates. We present the first functional study on engrailed in an unsegmented animal: the nematode Caenorhabditis elegans. In the developing worm embryo, ceh-16/engrailed is predominantly expressed in one bilateral row of ep...

متن کامل

The C. elegans CBFbeta homolog, BRO-1, regulates the proliferation, differentiation and specification of the stem cell-like seam cell lineages.

The RUNX/CBFbeta heterodimeric transcription factor plays an important role in regulating cell proliferation and differentiation in a variety of developmental contexts. Aberrant function of Runx and CBFbeta has been causally related to the development of various diseases, including acute myeloid leukemia, gastric cancer and cleidocranial dysplasia. The underlying mechanism of the RUNX/CBFbeta c...

متن کامل

The role of lin-22, a hairy/enhancer of split homolog, in patterning the peripheral nervous system of C. elegans.

In C. elegans, six lateral epidermal stem cells, the seam cells V1-V6, are located in a row along the anterior-posterior (A/P) body axis. Anterior seam cells (V1-V4) undergo a fairly simple sequence of stem cell divisions and generate only epidermal cells. Posterior seam cells (V5 and V6) undergo a more complicated sequence of cell divisions that include additional rounds of stem cell prolifera...

متن کامل

Cell shape and Wnt signaling redundantly control the division axis of C. elegans epithelial stem cells.

Tissue-specific stem cells combine proliferative and asymmetric divisions to balance self-renewal with differentiation. Tight regulation of the orientation and plane of cell division is crucial in this process. Here, we study the reproducible pattern of anterior-posterior-oriented stem cell-like divisions in the Caenorhabditis elegans seam epithelium. In a genetic screen, we identified an alg-1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental biology

دوره 333 2  شماره 

صفحات  -

تاریخ انتشار 2009